skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manthiram, Arumugam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anode-free lithium-sulfur batteries feature a cell design with a fully-lithiated cathode and a bare current collector as an anode to control the total amount of lithium in the cell. The lithium stripping and deposition is a key factor in designing an anode-free full cell to realize a practical cell configuration. To realize effective anode protection and achieve a good performance of the anode-free full cell, the manipulation of the electrolyte chemistry toward the modification of the solid-electrolyte interphase on the anode is considered a feasible approach. In this study, the use of neodymium triflate, Nd(OTf)3, as a dual-function electrolyte additive is demonstrated to promote homogeneous catalysis on the cathode conversion reactions and the anode stabilization. Nd(OTf)3 not only facilitates the conversion reaction by promoting the polysulfide adsorption, but also effectively protects the lithium-metal anode and stabilizes the lithium stripping and deposition during cycling. With this electrolyte modification, both Li ǁ Li2S half cells and Ni ǁ Li2S anode-free full cells support a high areal capacity of 5.5 – 7.0 mA h cm-2 and maintain a high Coulombic efficiency of 94 – 95% during cycling. 
    more » « less
  2. Aluminum foil anodes have the potential to significantly improve the energy density, safety, cost, and sustainability of Li-ion batteries (LIB). However, their adoption is limited by their notoriously poor cycle life, and the dramatic structural transformations of Al foil anodes during formation and cycling remain poorly understood. In this work, we investigate how the nucleation and growth kinetics of LiAl control the microstructural evolution and cycle life of Al foil anodes. First, we demonstrate the unique sensitivity of Al foil anodes to the cell design and cycling conditions and emphasize the necessity of electrochemical testing in practical full cells. Operando electrochemical impedance spectroscopy (EIS) is combined with scanning electron microscope (SEM) imaging of the lithiated foils to elucidate the relationships between LiAl nucleation kinetics and the resulting LiAl microstructure. Particularly, we investigate the effects of annealing the pristine foils, and controlling the overpotential and temperature during formation, showing that as-rolled foils lithiated at high overpotentials give a columnar LiAl microstructure. Finally, we show that uncontrolled LiAl nucleation during cycling quickly destroys this favorable columnar structure, and a significant improvement in cycle life of LiFePO4|| Al full cells is achieved by limiting the depth-of-discharge to <75%. 
    more » « less
  3. Recent advances in machine learning (ML) are expediting materials discovery and design. One significant challenge facing ML for materials is the expansive combinatorial space of potential materials formed by diverse constituents and their flexible configurations. This complexity is particularly evident in molecular mixtures, a frequently explored space for materials, such as battery electrolytes. Owing to the complex structures of molecules and the sequence-independent nature of mixtures, conventional ML methods have difficulties in modeling such systems. Here, we present MolSets, a specialized ML model for molecular mixtures, to overcome the difficulties. Representing individual molecules as graphs and their mixture as a set, MolSets leverages a graph neural network and the deep sets architecture to extract information at the molecular level and aggregate it at the mixture level, thus addressing local complexity while retaining global flexibility. We demonstrate the efficacy of MolSets in predicting the conductivity of lithium battery electrolytes and highlight its benefits in the virtual screening of the combinatorial chemical space. Published by the American Physical Society2024 
    more » « less
  4. In the development of sodium all-solid-state batteries (ASSBs), research efforts have focused on synthesizing highly conducting and electrochemically stable solid-state electrolytes. Glassy solid electrolytes (GSEs) have been considered very promising due to their tunable chemistry and resistance to dendrite growth. For these reasons, we focus here on the atomic-level structures and properties of GSEs in the compositional series (0.6–0.08y)Na2S + (0.4 + 0.08y)[(1 – y)[(1 – x)SiS2 + xPS5/2] + yNaPO3] (NaPSiSO). The mechanical moduli, glass transition temperatures, and temperature-dependent conductivity were determined and related to their short-range order structures that were determined using Raman, Fourier transform infrared, and 31P and 29Si magic angle spinning nuclear magnetic resonance spectroscopies. In addition, the conductivity activation energies were modeled using the Christensen–Martin–Anderson–Stuart model. These GSEs appear to be highly crystallization-resistant in the supercooled liquid region where no measurable crystallization below 450 °C could be observed in differential scanning calorimetry studies. Additionally, these GSEs were found to be highly conducting, with conductivities on the order of 10–5 (Ω cm)−1 at room temperature, and processable in the supercooled state without crystallization. For all these reasons, these NaPSiSO GSEs are considered to be highly competitive and easily processable candidate GSEs for enabling sodium ASSBs. 
    more » « less
  5. The promise of secondary sulfur-based batteries as a sustainable and low-cost alternative to electrochemical energy storage has been long held back by the polysulfide shuttle problem. Herein, we demonstrate the utilization of electrolyte-soluble additives based on (oxo)thiomolybdate as a tool to mitigate the effect of the polysulfide shuttle in secondary sulfur-based batteries. Through a variety of techniques, it is shown that the Mo-containing anionic additives undergo spontaneous nucleophilic reactions with the highly soluble, long-chain polysulfides via a neutral S-atom transfer process, yielding higher S/Mo ratio complexes along with short-chain polysulfides. More importantly, it is shown how the O/S atomic substitution on the molybdenum center can induce enzymatic-level enhancement in the above reaction rate by lowering the homolytic S–S bond cleavage energy. Lastly, through anode-level inspections, it was realized that the dendritic electroplating of Li was suppressed considerably in the system with oxo/thiomolybdate, thereby reducing the cell impedance and overpotential, leading to significantly improved cycle-life. The positive influence of the increased polysulfide uptake reaction kinetics is evidenced by stable cycle-life and a low capacity-fade rate of 0.1% per cycle in Li–S cells with a high sulfur loading and lean electrolyte compositions. 
    more » « less
  6. Enhancing the reversibility of Li is crucial for extending the cycle life of Li‐limited anode‐free lithium–sulfur (Li–S) batteries. Incorporating tellurium (Te) in the system has proven to be highly effective by its reaction with polysulfides and forming a passivating interfacial layer on Li surface, which reduces the Li‐ion diffusion barrier. However, due to the poor utilization of Te, a significant amount of Te is required to improve cell cycling performance. To address this, nanowire‐structured Te (TeNW) is synthesized via a hydrothermal method and applied to Li2S‐based anode‐free cells to minimize the Te content in the system while extending the cell cycle life. Coating TeNW onto the separator greatly enhances Te utilization and demonstrates a significant cycle life improvement (38% retention over 300 cycles) with only 4 wt% TeNW content relative to the active material. The versatility of TeNW is further demonstrated by utilizing them with carbon nanotubes as the anode substrate. The exceptional performance of TeNW is attributed to the high‐surface‐area nanostructure and excellent conductive network, facilitating efficient electron transfer during cell cycling. These advantageous properties position TeNW as a promising material to enhance the cycle life of Li‐limited Li–S batteries. 
    more » « less
  7. The electrochemical behavior of sulfur-based batteries is intrinsically governed by polysulfide species. Here, we compare the substitutions of selenium and tellurium into polysulfide chains and demonstrate their beneficial impact on the chemistry of lithium–sulfur batteries. While selenium-substituted polysulfides enhance cathode utilization by effectively catalyzing the sulfur/Li 2 S conversion reactions due to the preferential formation of radical intermediates, tellurium-substituted polysulfides improve lithium cycling efficiency by reducing into a passivating interfacial layer on the lithium surface with low Li + -ion diffusion barriers. This unconventional strategy based on “molecular engineering” of polysulfides and exploiting the intrinsic polysulfide shuttle effect is validated by a ten-fold improvement in the cycle life of lean-electrolyte “anode-free” pouch cells. Assembled with no free lithium metal at the anode, the anode-free configuration maximizes the energy density, mitigates the challenges of handling thin lithium foils, and eliminates self-discharge upon cell assembly. The insights generated into the differences between selenium and tellurium chemistries can be applied to benefit a broad range of metal–chalcogen batteries as well as chalcogenide solid electrolytes. 
    more » « less
  8. Abstract Despite the potential to become the next‐generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium‐metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one‐step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te‐enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode‐free Li–S batteries with only 0.1 mconcentration in conventional ether‐based electrolytes. The cell with the LiTe3additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode‐free pouch full‐cells under lean electrolyte conditions. 
    more » « less